'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  1(q0(1(x1))) -> 0(1(q1(x1)))
     , 1(q0(0(x1))) -> 0(0(q1(x1)))
     , 1(q1(1(x1))) -> 1(1(q1(x1)))
     , 1(q1(0(x1))) -> 1(0(q1(x1)))
     , 0(q1(x1)) -> q2(1(x1))
     , 1(q2(x1)) -> q2(1(x1))
     , 0(q2(x1)) -> 0(q0(x1))}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))
    , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))
    , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))
    , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))
    , 0^#(q1(x1)) -> c_4(1^#(x1))
    , 1^#(q2(x1)) -> c_5(1^#(x1))
    , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))}
  
  The usable rules are:
   {  1(q0(1(x1))) -> 0(1(q1(x1)))
    , 1(q0(0(x1))) -> 0(0(q1(x1)))
    , 1(q1(1(x1))) -> 1(1(q1(x1)))
    , 1(q1(0(x1))) -> 1(0(q1(x1)))
    , 0(q1(x1)) -> q2(1(x1))
    , 1(q2(x1)) -> q2(1(x1))
    , 0(q2(x1)) -> 0(q0(x1))}
  
  The estimated dependency graph contains the following edges:
   {1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))}
     ==> {0^#(q2(x1)) -> c_6(0^#(q0(x1)))}
   {1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))}
     ==> {0^#(q2(x1)) -> c_6(0^#(q0(x1)))}
   {1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))}
     ==> {1^#(q2(x1)) -> c_5(1^#(x1))}
   {1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))}
     ==> {1^#(q2(x1)) -> c_5(1^#(x1))}
   {0^#(q1(x1)) -> c_4(1^#(x1))}
     ==> {1^#(q2(x1)) -> c_5(1^#(x1))}
   {0^#(q1(x1)) -> c_4(1^#(x1))}
     ==> {1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))}
   {0^#(q1(x1)) -> c_4(1^#(x1))}
     ==> {1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))}
   {0^#(q1(x1)) -> c_4(1^#(x1))}
     ==> {1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))}
   {0^#(q1(x1)) -> c_4(1^#(x1))}
     ==> {1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))}
   {1^#(q2(x1)) -> c_5(1^#(x1))}
     ==> {1^#(q2(x1)) -> c_5(1^#(x1))}
   {1^#(q2(x1)) -> c_5(1^#(x1))}
     ==> {1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))}
   {1^#(q2(x1)) -> c_5(1^#(x1))}
     ==> {1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))}
   {1^#(q2(x1)) -> c_5(1^#(x1))}
     ==> {1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))}
   {1^#(q2(x1)) -> c_5(1^#(x1))}
     ==> {1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))}
  
  We consider the following path(s):
   1) {  0^#(q1(x1)) -> c_4(1^#(x1))
       , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))
       , 1^#(q2(x1)) -> c_5(1^#(x1))
       , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))
       , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))}
      
      The usable rules for this path are the following:
      {  1(q0(1(x1))) -> 0(1(q1(x1)))
       , 1(q0(0(x1))) -> 0(0(q1(x1)))
       , 1(q1(1(x1))) -> 1(1(q1(x1)))
       , 1(q1(0(x1))) -> 1(0(q1(x1)))
       , 0(q1(x1)) -> q2(1(x1))
       , 1(q2(x1)) -> q2(1(x1))
       , 0(q2(x1)) -> 0(q0(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  1(q0(1(x1))) -> 0(1(q1(x1)))
               , 1(q0(0(x1))) -> 0(0(q1(x1)))
               , 1(q1(1(x1))) -> 1(1(q1(x1)))
               , 1(q1(0(x1))) -> 1(0(q1(x1)))
               , 0(q1(x1)) -> q2(1(x1))
               , 1(q2(x1)) -> q2(1(x1))
               , 0(q2(x1)) -> 0(q0(x1))
               , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))
               , 1^#(q2(x1)) -> c_5(1^#(x1))
               , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))
               , 0^#(q1(x1)) -> c_4(1^#(x1))
               , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {0(q2(x1)) -> 0(q0(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(q2(x1)) -> 0(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  1^#(q2(x1)) -> c_5(1^#(x1))
             , 0^#(q1(x1)) -> c_4(1^#(x1))}
            and weakly orienting the rules
            {0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  1^#(q2(x1)) -> c_5(1^#(x1))
               , 0^#(q1(x1)) -> c_4(1^#(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [3]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(q1(x1)) -> q2(1(x1))}
            and weakly orienting the rules
            {  1^#(q2(x1)) -> c_5(1^#(x1))
             , 0^#(q1(x1)) -> c_4(1^#(x1))
             , 0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(q1(x1)) -> q2(1(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  1^#(x1) = [1] x1 + [15]
                  c_0(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [15]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [2]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))}
            and weakly orienting the rules
            {  0(q1(x1)) -> q2(1(x1))
             , 1^#(q2(x1)) -> c_5(1^#(x1))
             , 0^#(q1(x1)) -> c_4(1^#(x1))
             , 0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [13]
                  0(x1) = [1] x1 + [10]
                  q1(x1) = [1] x1 + [4]
                  q2(x1) = [1] x1 + [13]
                  1^#(x1) = [1] x1 + [3]
                  c_0(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [12]
                  c_3(x1) = [1] x1 + [6]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [5]
                  c_6(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  1(q0(1(x1))) -> 0(1(q1(x1)))
                 , 1(q0(0(x1))) -> 0(0(q1(x1)))
                 , 1(q1(1(x1))) -> 1(1(q1(x1)))
                 , 1(q1(0(x1))) -> 1(0(q1(x1)))
                 , 1(q2(x1)) -> q2(1(x1))
                 , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))
                 , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))}
              Weak Rules:
                {  1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))
                 , 0(q1(x1)) -> q2(1(x1))
                 , 1^#(q2(x1)) -> c_5(1^#(x1))
                 , 0^#(q1(x1)) -> c_4(1^#(x1))
                 , 0(q2(x1)) -> 0(q0(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  1(q0(1(x1))) -> 0(1(q1(x1)))
                   , 1(q0(0(x1))) -> 0(0(q1(x1)))
                   , 1(q1(1(x1))) -> 1(1(q1(x1)))
                   , 1(q1(0(x1))) -> 1(0(q1(x1)))
                   , 1(q2(x1)) -> q2(1(x1))
                   , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))
                   , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))}
                Weak Rules:
                  {  1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))
                   , 0(q1(x1)) -> q2(1(x1))
                   , 1^#(q2(x1)) -> c_5(1^#(x1))
                   , 0^#(q1(x1)) -> c_4(1^#(x1))
                   , 0(q2(x1)) -> 0(q0(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  q0_0(2) -> 2
                 , q0_0(4) -> 2
                 , q0_0(5) -> 2
                 , q1_0(2) -> 4
                 , q1_0(4) -> 4
                 , q1_0(5) -> 4
                 , q2_0(2) -> 5
                 , q2_0(4) -> 5
                 , q2_0(5) -> 5
                 , 1^#_0(2) -> 6
                 , 1^#_0(4) -> 6
                 , 1^#_0(5) -> 6
                 , 0^#_0(2) -> 8
                 , 0^#_0(4) -> 8
                 , 0^#_0(5) -> 8
                 , c_4_0(6) -> 8
                 , c_5_0(6) -> 6}
      
   2) {  0^#(q1(x1)) -> c_4(1^#(x1))
       , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))
       , 1^#(q2(x1)) -> c_5(1^#(x1))
       , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))
       , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))
       , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))}
      
      The usable rules for this path are the following:
      {  1(q0(1(x1))) -> 0(1(q1(x1)))
       , 1(q0(0(x1))) -> 0(0(q1(x1)))
       , 1(q1(1(x1))) -> 1(1(q1(x1)))
       , 1(q1(0(x1))) -> 1(0(q1(x1)))
       , 0(q1(x1)) -> q2(1(x1))
       , 1(q2(x1)) -> q2(1(x1))
       , 0(q2(x1)) -> 0(q0(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  1(q0(1(x1))) -> 0(1(q1(x1)))
               , 1(q0(0(x1))) -> 0(0(q1(x1)))
               , 1(q1(1(x1))) -> 1(1(q1(x1)))
               , 1(q1(0(x1))) -> 1(0(q1(x1)))
               , 0(q1(x1)) -> q2(1(x1))
               , 1(q2(x1)) -> q2(1(x1))
               , 0(q2(x1)) -> 0(q0(x1))
               , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))
               , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))
               , 1^#(q2(x1)) -> c_5(1^#(x1))
               , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))
               , 0^#(q1(x1)) -> c_4(1^#(x1))
               , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {0(q2(x1)) -> 0(q0(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(q2(x1)) -> 0(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [4]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0^#(q2(x1)) -> c_6(0^#(q0(x1)))}
            and weakly orienting the rules
            {0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(q2(x1)) -> c_6(0^#(q0(x1)))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))}
            and weakly orienting the rules
            {  0^#(q2(x1)) -> c_6(0^#(q0(x1)))
             , 0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [4]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {1^#(q2(x1)) -> c_5(1^#(x1))}
            and weakly orienting the rules
            {  1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))
             , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))
             , 0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {1^#(q2(x1)) -> c_5(1^#(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(q1(x1)) -> q2(1(x1))}
            and weakly orienting the rules
            {  1^#(q2(x1)) -> c_5(1^#(x1))
             , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))
             , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))
             , 0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(q1(x1)) -> q2(1(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [8]
                  q0(x1) = [1] x1 + [4]
                  0(x1) = [1] x1 + [9]
                  q1(x1) = [1] x1 + [12]
                  q2(x1) = [1] x1 + [8]
                  1^#(x1) = [1] x1 + [12]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [8]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [4]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0^#(q1(x1)) -> c_4(1^#(x1))}
            and weakly orienting the rules
            {  0(q1(x1)) -> q2(1(x1))
             , 1^#(q2(x1)) -> c_5(1^#(x1))
             , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))
             , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))
             , 0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(q1(x1)) -> c_4(1^#(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [2]
                  0(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [8]
                  q2(x1) = [1] x1 + [4]
                  1^#(x1) = [1] x1 + [6]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [8]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  1(q0(1(x1))) -> 0(1(q1(x1)))
                 , 1(q0(0(x1))) -> 0(0(q1(x1)))
                 , 1(q1(1(x1))) -> 1(1(q1(x1)))
                 , 1(q1(0(x1))) -> 1(0(q1(x1)))
                 , 1(q2(x1)) -> q2(1(x1))
                 , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))
                 , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))}
              Weak Rules:
                {  0^#(q1(x1)) -> c_4(1^#(x1))
                 , 0(q1(x1)) -> q2(1(x1))
                 , 1^#(q2(x1)) -> c_5(1^#(x1))
                 , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))
                 , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))
                 , 0(q2(x1)) -> 0(q0(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  1(q0(1(x1))) -> 0(1(q1(x1)))
                   , 1(q0(0(x1))) -> 0(0(q1(x1)))
                   , 1(q1(1(x1))) -> 1(1(q1(x1)))
                   , 1(q1(0(x1))) -> 1(0(q1(x1)))
                   , 1(q2(x1)) -> q2(1(x1))
                   , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))
                   , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))}
                Weak Rules:
                  {  0^#(q1(x1)) -> c_4(1^#(x1))
                   , 0(q1(x1)) -> q2(1(x1))
                   , 1^#(q2(x1)) -> c_5(1^#(x1))
                   , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))
                   , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))
                   , 0(q2(x1)) -> 0(q0(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  q0_0(2) -> 2
                 , q0_0(4) -> 2
                 , q0_0(5) -> 2
                 , q1_0(2) -> 4
                 , q1_0(4) -> 4
                 , q1_0(5) -> 4
                 , q2_0(2) -> 5
                 , q2_0(4) -> 5
                 , q2_0(5) -> 5
                 , 1^#_0(2) -> 6
                 , 1^#_0(4) -> 6
                 , 1^#_0(5) -> 6
                 , 0^#_0(2) -> 8
                 , 0^#_0(4) -> 8
                 , 0^#_0(5) -> 8
                 , c_4_0(6) -> 8
                 , c_5_0(6) -> 6
                 , c_6_0(8) -> 8}
      
   3) {  0^#(q1(x1)) -> c_4(1^#(x1))
       , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))
       , 1^#(q2(x1)) -> c_5(1^#(x1))
       , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))
       , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))}
      
      The usable rules for this path are the following:
      {  1(q0(1(x1))) -> 0(1(q1(x1)))
       , 1(q0(0(x1))) -> 0(0(q1(x1)))
       , 1(q1(1(x1))) -> 1(1(q1(x1)))
       , 1(q1(0(x1))) -> 1(0(q1(x1)))
       , 0(q1(x1)) -> q2(1(x1))
       , 1(q2(x1)) -> q2(1(x1))
       , 0(q2(x1)) -> 0(q0(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  1(q0(1(x1))) -> 0(1(q1(x1)))
               , 1(q0(0(x1))) -> 0(0(q1(x1)))
               , 1(q1(1(x1))) -> 1(1(q1(x1)))
               , 1(q1(0(x1))) -> 1(0(q1(x1)))
               , 0(q1(x1)) -> q2(1(x1))
               , 1(q2(x1)) -> q2(1(x1))
               , 0(q2(x1)) -> 0(q0(x1))
               , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))
               , 1^#(q2(x1)) -> c_5(1^#(x1))
               , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))
               , 0^#(q1(x1)) -> c_4(1^#(x1))
               , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {0(q2(x1)) -> 0(q0(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(q2(x1)) -> 0(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(x1)) -> q2(1(x1))
             , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))}
            and weakly orienting the rules
            {0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(x1)) -> q2(1(x1))
               , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  1^#(x1) = [1] x1 + [9]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {1^#(q2(x1)) -> c_5(1^#(x1))}
            and weakly orienting the rules
            {  0(q1(x1)) -> q2(1(x1))
             , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))
             , 0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {1^#(q2(x1)) -> c_5(1^#(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [15]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [2]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0^#(q1(x1)) -> c_4(1^#(x1))}
            and weakly orienting the rules
            {  1^#(q2(x1)) -> c_5(1^#(x1))
             , 0(q1(x1)) -> q2(1(x1))
             , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))
             , 0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(q1(x1)) -> c_4(1^#(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [2]
                  c_3(x1) = [1] x1 + [10]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  1(q0(1(x1))) -> 0(1(q1(x1)))
                 , 1(q0(0(x1))) -> 0(0(q1(x1)))
                 , 1(q1(1(x1))) -> 1(1(q1(x1)))
                 , 1(q1(0(x1))) -> 1(0(q1(x1)))
                 , 1(q2(x1)) -> q2(1(x1))
                 , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))
                 , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))}
              Weak Rules:
                {  0^#(q1(x1)) -> c_4(1^#(x1))
                 , 1^#(q2(x1)) -> c_5(1^#(x1))
                 , 0(q1(x1)) -> q2(1(x1))
                 , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))
                 , 0(q2(x1)) -> 0(q0(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  1(q0(1(x1))) -> 0(1(q1(x1)))
                   , 1(q0(0(x1))) -> 0(0(q1(x1)))
                   , 1(q1(1(x1))) -> 1(1(q1(x1)))
                   , 1(q1(0(x1))) -> 1(0(q1(x1)))
                   , 1(q2(x1)) -> q2(1(x1))
                   , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))
                   , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))}
                Weak Rules:
                  {  0^#(q1(x1)) -> c_4(1^#(x1))
                   , 1^#(q2(x1)) -> c_5(1^#(x1))
                   , 0(q1(x1)) -> q2(1(x1))
                   , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))
                   , 0(q2(x1)) -> 0(q0(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  q0_0(2) -> 2
                 , q1_0(2) -> 2
                 , q2_0(2) -> 2
                 , 1^#_0(2) -> 1
                 , 0^#_0(2) -> 1
                 , c_4_0(1) -> 1
                 , c_5_0(1) -> 1}
      
   4) {  0^#(q1(x1)) -> c_4(1^#(x1))
       , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))
       , 1^#(q2(x1)) -> c_5(1^#(x1))
       , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))}
      
      The usable rules for this path are the following:
      {  1(q0(1(x1))) -> 0(1(q1(x1)))
       , 1(q0(0(x1))) -> 0(0(q1(x1)))
       , 1(q1(1(x1))) -> 1(1(q1(x1)))
       , 1(q1(0(x1))) -> 1(0(q1(x1)))
       , 0(q1(x1)) -> q2(1(x1))
       , 1(q2(x1)) -> q2(1(x1))
       , 0(q2(x1)) -> 0(q0(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  1(q0(1(x1))) -> 0(1(q1(x1)))
               , 1(q0(0(x1))) -> 0(0(q1(x1)))
               , 1(q1(1(x1))) -> 1(1(q1(x1)))
               , 1(q1(0(x1))) -> 1(0(q1(x1)))
               , 0(q1(x1)) -> q2(1(x1))
               , 1(q2(x1)) -> q2(1(x1))
               , 0(q2(x1)) -> 0(q0(x1))
               , 0^#(q1(x1)) -> c_4(1^#(x1))
               , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))
               , 1^#(q2(x1)) -> c_5(1^#(x1))
               , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {0(q2(x1)) -> 0(q0(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(q2(x1)) -> 0(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {1^#(q2(x1)) -> c_5(1^#(x1))}
            and weakly orienting the rules
            {0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {1^#(q2(x1)) -> c_5(1^#(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [9]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0^#(q1(x1)) -> c_4(1^#(x1))}
            and weakly orienting the rules
            {  1^#(q2(x1)) -> c_5(1^#(x1))
             , 0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(q1(x1)) -> c_4(1^#(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [9]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(q1(x1)) -> q2(1(x1))}
            and weakly orienting the rules
            {  0^#(q1(x1)) -> c_4(1^#(x1))
             , 1^#(q2(x1)) -> c_5(1^#(x1))
             , 0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(q1(x1)) -> q2(1(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  1^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [9]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [3]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [8]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  1(q0(1(x1))) -> 0(1(q1(x1)))
                 , 1(q0(0(x1))) -> 0(0(q1(x1)))
                 , 1(q1(1(x1))) -> 1(1(q1(x1)))
                 , 1(q1(0(x1))) -> 1(0(q1(x1)))
                 , 1(q2(x1)) -> q2(1(x1))
                 , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))
                 , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))}
              Weak Rules:
                {  0(q1(x1)) -> q2(1(x1))
                 , 0^#(q1(x1)) -> c_4(1^#(x1))
                 , 1^#(q2(x1)) -> c_5(1^#(x1))
                 , 0(q2(x1)) -> 0(q0(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  1(q0(1(x1))) -> 0(1(q1(x1)))
                   , 1(q0(0(x1))) -> 0(0(q1(x1)))
                   , 1(q1(1(x1))) -> 1(1(q1(x1)))
                   , 1(q1(0(x1))) -> 1(0(q1(x1)))
                   , 1(q2(x1)) -> q2(1(x1))
                   , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))
                   , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))}
                Weak Rules:
                  {  0(q1(x1)) -> q2(1(x1))
                   , 0^#(q1(x1)) -> c_4(1^#(x1))
                   , 1^#(q2(x1)) -> c_5(1^#(x1))
                   , 0(q2(x1)) -> 0(q0(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  q0_0(2) -> 2
                 , q0_0(4) -> 2
                 , q0_0(5) -> 2
                 , q1_0(2) -> 4
                 , q1_0(4) -> 4
                 , q1_0(5) -> 4
                 , q2_0(2) -> 5
                 , q2_0(4) -> 5
                 , q2_0(5) -> 5
                 , 1^#_0(2) -> 6
                 , 1^#_0(4) -> 6
                 , 1^#_0(5) -> 6
                 , 0^#_0(2) -> 8
                 , 0^#_0(4) -> 8
                 , 0^#_0(5) -> 8
                 , c_4_0(6) -> 8
                 , c_5_0(6) -> 6}
      
   5) {  0^#(q1(x1)) -> c_4(1^#(x1))
       , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))
       , 1^#(q2(x1)) -> c_5(1^#(x1))
       , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))
       , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))
       , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))}
      
      The usable rules for this path are the following:
      {  1(q0(1(x1))) -> 0(1(q1(x1)))
       , 1(q0(0(x1))) -> 0(0(q1(x1)))
       , 1(q1(1(x1))) -> 1(1(q1(x1)))
       , 1(q1(0(x1))) -> 1(0(q1(x1)))
       , 0(q1(x1)) -> q2(1(x1))
       , 1(q2(x1)) -> q2(1(x1))
       , 0(q2(x1)) -> 0(q0(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  1(q0(1(x1))) -> 0(1(q1(x1)))
               , 1(q0(0(x1))) -> 0(0(q1(x1)))
               , 1(q1(1(x1))) -> 1(1(q1(x1)))
               , 1(q1(0(x1))) -> 1(0(q1(x1)))
               , 0(q1(x1)) -> q2(1(x1))
               , 1(q2(x1)) -> q2(1(x1))
               , 0(q2(x1)) -> 0(q0(x1))
               , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))
               , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))
               , 1^#(q2(x1)) -> c_5(1^#(x1))
               , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))
               , 0^#(q1(x1)) -> c_4(1^#(x1))
               , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {0(q2(x1)) -> 0(q0(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(q2(x1)) -> 0(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [4]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {1^#(q2(x1)) -> c_5(1^#(x1))}
            and weakly orienting the rules
            {0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {1^#(q2(x1)) -> c_5(1^#(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0^#(q1(x1)) -> c_4(1^#(x1))
             , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))}
            and weakly orienting the rules
            {  1^#(q2(x1)) -> c_5(1^#(x1))
             , 0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0^#(q1(x1)) -> c_4(1^#(x1))
               , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [4]
                  0^#(x1) = [1] x1 + [7]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  0(q1(x1)) -> q2(1(x1))
             , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))}
            and weakly orienting the rules
            {  0^#(q1(x1)) -> c_4(1^#(x1))
             , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))
             , 1^#(q2(x1)) -> c_5(1^#(x1))
             , 0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  0(q1(x1)) -> q2(1(x1))
               , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [6]
                  0(x1) = [1] x1 + [6]
                  q1(x1) = [1] x1 + [2]
                  q2(x1) = [1] x1 + [7]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [2]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [1] x1 + [3]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  1(q0(1(x1))) -> 0(1(q1(x1)))
                 , 1(q0(0(x1))) -> 0(0(q1(x1)))
                 , 1(q1(1(x1))) -> 1(1(q1(x1)))
                 , 1(q1(0(x1))) -> 1(0(q1(x1)))
                 , 1(q2(x1)) -> q2(1(x1))
                 , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))
                 , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))}
              Weak Rules:
                {  0(q1(x1)) -> q2(1(x1))
                 , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))
                 , 0^#(q1(x1)) -> c_4(1^#(x1))
                 , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))
                 , 1^#(q2(x1)) -> c_5(1^#(x1))
                 , 0(q2(x1)) -> 0(q0(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  1(q0(1(x1))) -> 0(1(q1(x1)))
                   , 1(q0(0(x1))) -> 0(0(q1(x1)))
                   , 1(q1(1(x1))) -> 1(1(q1(x1)))
                   , 1(q1(0(x1))) -> 1(0(q1(x1)))
                   , 1(q2(x1)) -> q2(1(x1))
                   , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))
                   , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))}
                Weak Rules:
                  {  0(q1(x1)) -> q2(1(x1))
                   , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))
                   , 0^#(q1(x1)) -> c_4(1^#(x1))
                   , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))
                   , 1^#(q2(x1)) -> c_5(1^#(x1))
                   , 0(q2(x1)) -> 0(q0(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  q0_0(2) -> 2
                 , q0_0(4) -> 2
                 , q0_0(5) -> 2
                 , q1_0(2) -> 4
                 , q1_0(4) -> 4
                 , q1_0(5) -> 4
                 , q2_0(2) -> 5
                 , q2_0(4) -> 5
                 , q2_0(5) -> 5
                 , 1^#_0(2) -> 6
                 , 1^#_0(4) -> 6
                 , 1^#_0(5) -> 6
                 , 0^#_0(2) -> 8
                 , 0^#_0(4) -> 8
                 , 0^#_0(5) -> 8
                 , c_4_0(6) -> 8
                 , c_5_0(6) -> 6
                 , c_6_0(8) -> 8}
      
   6) {  0^#(q1(x1)) -> c_4(1^#(x1))
       , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))
       , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))}
      
      The usable rules for this path are the following:
      {  1(q0(1(x1))) -> 0(1(q1(x1)))
       , 1(q0(0(x1))) -> 0(0(q1(x1)))
       , 1(q1(1(x1))) -> 1(1(q1(x1)))
       , 1(q1(0(x1))) -> 1(0(q1(x1)))
       , 1(q2(x1)) -> q2(1(x1))
       , 0(q1(x1)) -> q2(1(x1))
       , 0(q2(x1)) -> 0(q0(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  1(q0(1(x1))) -> 0(1(q1(x1)))
               , 1(q0(0(x1))) -> 0(0(q1(x1)))
               , 1(q1(1(x1))) -> 1(1(q1(x1)))
               , 1(q1(0(x1))) -> 1(0(q1(x1)))
               , 1(q2(x1)) -> q2(1(x1))
               , 0(q1(x1)) -> q2(1(x1))
               , 0(q2(x1)) -> 0(q0(x1))
               , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))
               , 0^#(q1(x1)) -> c_4(1^#(x1))
               , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {0(q1(x1)) -> q2(1(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(q1(x1)) -> q2(1(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  1^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  0^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [7]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0^#(q1(x1)) -> c_4(1^#(x1))}
            and weakly orienting the rules
            {0(q1(x1)) -> q2(1(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(q1(x1)) -> c_4(1^#(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  1^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [8]
                  0^#(x1) = [1] x1 + [9]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(q2(x1)) -> 0(q0(x1))}
            and weakly orienting the rules
            {  0^#(q1(x1)) -> c_4(1^#(x1))
             , 0(q1(x1)) -> q2(1(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(q2(x1)) -> 0(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [8]
                  0^#(x1) = [1] x1 + [9]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [8]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0^#(q2(x1)) -> c_6(0^#(q0(x1)))}
            and weakly orienting the rules
            {  0(q2(x1)) -> 0(q0(x1))
             , 0^#(q1(x1)) -> c_4(1^#(x1))
             , 0(q1(x1)) -> q2(1(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(q2(x1)) -> c_6(0^#(q0(x1)))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [7]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))}
            and weakly orienting the rules
            {  0^#(q2(x1)) -> c_6(0^#(q0(x1)))
             , 0(q2(x1)) -> 0(q0(x1))
             , 0^#(q1(x1)) -> c_4(1^#(x1))
             , 0(q1(x1)) -> q2(1(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [8]
                  q1(x1) = [1] x1 + [8]
                  q2(x1) = [1] x1 + [12]
                  1^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [7]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  1(q0(1(x1))) -> 0(1(q1(x1)))
                 , 1(q0(0(x1))) -> 0(0(q1(x1)))
                 , 1(q1(1(x1))) -> 1(1(q1(x1)))
                 , 1(q1(0(x1))) -> 1(0(q1(x1)))
                 , 1(q2(x1)) -> q2(1(x1))}
              Weak Rules:
                {  1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))
                 , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))
                 , 0(q2(x1)) -> 0(q0(x1))
                 , 0^#(q1(x1)) -> c_4(1^#(x1))
                 , 0(q1(x1)) -> q2(1(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  1(q0(1(x1))) -> 0(1(q1(x1)))
                   , 1(q0(0(x1))) -> 0(0(q1(x1)))
                   , 1(q1(1(x1))) -> 1(1(q1(x1)))
                   , 1(q1(0(x1))) -> 1(0(q1(x1)))
                   , 1(q2(x1)) -> q2(1(x1))}
                Weak Rules:
                  {  1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))
                   , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))
                   , 0(q2(x1)) -> 0(q0(x1))
                   , 0^#(q1(x1)) -> c_4(1^#(x1))
                   , 0(q1(x1)) -> q2(1(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  q0_0(2) -> 2
                 , q0_0(4) -> 2
                 , q0_0(5) -> 2
                 , q1_0(2) -> 4
                 , q1_0(4) -> 4
                 , q1_0(5) -> 4
                 , q2_0(2) -> 5
                 , q2_0(4) -> 5
                 , q2_0(5) -> 5
                 , 1^#_0(2) -> 6
                 , 1^#_0(4) -> 6
                 , 1^#_0(5) -> 6
                 , 0^#_0(2) -> 8
                 , 0^#_0(4) -> 8
                 , 0^#_0(5) -> 8
                 , c_4_0(6) -> 8
                 , c_6_0(8) -> 8}
      
   7) {  0^#(q1(x1)) -> c_4(1^#(x1))
       , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))
       , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))}
      
      The usable rules for this path are the following:
      {  0(q1(x1)) -> q2(1(x1))
       , 0(q2(x1)) -> 0(q0(x1))
       , 1(q0(1(x1))) -> 0(1(q1(x1)))
       , 1(q0(0(x1))) -> 0(0(q1(x1)))
       , 1(q1(1(x1))) -> 1(1(q1(x1)))
       , 1(q1(0(x1))) -> 1(0(q1(x1)))
       , 1(q2(x1)) -> q2(1(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  0(q1(x1)) -> q2(1(x1))
               , 0(q2(x1)) -> 0(q0(x1))
               , 1(q0(1(x1))) -> 0(1(q1(x1)))
               , 1(q0(0(x1))) -> 0(0(q1(x1)))
               , 1(q1(1(x1))) -> 1(1(q1(x1)))
               , 1(q1(0(x1))) -> 1(0(q1(x1)))
               , 1(q2(x1)) -> q2(1(x1))
               , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))
               , 0^#(q1(x1)) -> c_4(1^#(x1))
               , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {0(q2(x1)) -> 0(q0(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(q2(x1)) -> 0(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0^#(q1(x1)) -> c_4(1^#(x1))}
            and weakly orienting the rules
            {0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(q1(x1)) -> c_4(1^#(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [2]
                  c_1(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [3]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0^#(q2(x1)) -> c_6(0^#(q0(x1)))}
            and weakly orienting the rules
            {  0^#(q1(x1)) -> c_4(1^#(x1))
             , 0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(q2(x1)) -> c_6(0^#(q0(x1)))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))}
            and weakly orienting the rules
            {  0^#(q2(x1)) -> c_6(0^#(q0(x1)))
             , 0^#(q1(x1)) -> c_4(1^#(x1))
             , 0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  1(q0(1(x1))) -> 0(1(q1(x1)))
             , 1(q0(0(x1))) -> 0(0(q1(x1)))}
            and weakly orienting the rules
            {  1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))
             , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))
             , 0^#(q1(x1)) -> c_4(1^#(x1))
             , 0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  1(q0(1(x1))) -> 0(1(q1(x1)))
               , 1(q0(0(x1))) -> 0(0(q1(x1)))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [4]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [9]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  0(q1(x1)) -> q2(1(x1))
                 , 1(q1(1(x1))) -> 1(1(q1(x1)))
                 , 1(q1(0(x1))) -> 1(0(q1(x1)))
                 , 1(q2(x1)) -> q2(1(x1))}
              Weak Rules:
                {  1(q0(1(x1))) -> 0(1(q1(x1)))
                 , 1(q0(0(x1))) -> 0(0(q1(x1)))
                 , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))
                 , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))
                 , 0^#(q1(x1)) -> c_4(1^#(x1))
                 , 0(q2(x1)) -> 0(q0(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  0(q1(x1)) -> q2(1(x1))
                   , 1(q1(1(x1))) -> 1(1(q1(x1)))
                   , 1(q1(0(x1))) -> 1(0(q1(x1)))
                   , 1(q2(x1)) -> q2(1(x1))}
                Weak Rules:
                  {  1(q0(1(x1))) -> 0(1(q1(x1)))
                   , 1(q0(0(x1))) -> 0(0(q1(x1)))
                   , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))
                   , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))
                   , 0^#(q1(x1)) -> c_4(1^#(x1))
                   , 0(q2(x1)) -> 0(q0(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  q0_0(2) -> 2
                 , q0_0(4) -> 2
                 , q0_0(5) -> 2
                 , q1_0(2) -> 4
                 , q1_0(4) -> 4
                 , q1_0(5) -> 4
                 , q2_0(2) -> 5
                 , q2_0(4) -> 5
                 , q2_0(5) -> 5
                 , 1^#_0(2) -> 6
                 , 1^#_0(4) -> 6
                 , 1^#_0(5) -> 6
                 , 0^#_0(2) -> 8
                 , 0^#_0(4) -> 8
                 , 0^#_0(5) -> 8
                 , c_4_0(6) -> 8
                 , c_6_0(8) -> 8}
      
   8) {  0^#(q1(x1)) -> c_4(1^#(x1))
       , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))}
      
      The usable rules for this path are the following:
      {  1(q0(1(x1))) -> 0(1(q1(x1)))
       , 1(q0(0(x1))) -> 0(0(q1(x1)))
       , 1(q1(1(x1))) -> 1(1(q1(x1)))
       , 1(q1(0(x1))) -> 1(0(q1(x1)))
       , 1(q2(x1)) -> q2(1(x1))
       , 0(q1(x1)) -> q2(1(x1))
       , 0(q2(x1)) -> 0(q0(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  1(q0(1(x1))) -> 0(1(q1(x1)))
               , 1(q0(0(x1))) -> 0(0(q1(x1)))
               , 1(q1(1(x1))) -> 1(1(q1(x1)))
               , 1(q1(0(x1))) -> 1(0(q1(x1)))
               , 1(q2(x1)) -> q2(1(x1))
               , 0(q1(x1)) -> q2(1(x1))
               , 0(q2(x1)) -> 0(q0(x1))
               , 0^#(q1(x1)) -> c_4(1^#(x1))
               , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {0(q1(x1)) -> q2(1(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(q1(x1)) -> q2(1(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))}
            and weakly orienting the rules
            {0(q1(x1)) -> q2(1(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [0]
                  1^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0(q2(x1)) -> 0(q0(x1))}
            and weakly orienting the rules
            {  1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))
             , 0(q1(x1)) -> q2(1(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(q2(x1)) -> 0(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [9]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [8]
                  1^#(x1) = [1] x1 + [4]
                  c_0(x1) = [1] x1 + [3]
                  0^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0^#(q1(x1)) -> c_4(1^#(x1))}
            and weakly orienting the rules
            {  0(q2(x1)) -> 0(q0(x1))
             , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))
             , 0(q1(x1)) -> q2(1(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(q1(x1)) -> c_4(1^#(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [9]
                  0(x1) = [1] x1 + [0]
                  q1(x1) = [1] x1 + [9]
                  q2(x1) = [1] x1 + [9]
                  1^#(x1) = [1] x1 + [7]
                  c_0(x1) = [1] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [2]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  1(q0(1(x1))) -> 0(1(q1(x1)))
                 , 1(q0(0(x1))) -> 0(0(q1(x1)))
                 , 1(q1(1(x1))) -> 1(1(q1(x1)))
                 , 1(q1(0(x1))) -> 1(0(q1(x1)))
                 , 1(q2(x1)) -> q2(1(x1))}
              Weak Rules:
                {  0^#(q1(x1)) -> c_4(1^#(x1))
                 , 0(q2(x1)) -> 0(q0(x1))
                 , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))
                 , 0(q1(x1)) -> q2(1(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  1(q0(1(x1))) -> 0(1(q1(x1)))
                   , 1(q0(0(x1))) -> 0(0(q1(x1)))
                   , 1(q1(1(x1))) -> 1(1(q1(x1)))
                   , 1(q1(0(x1))) -> 1(0(q1(x1)))
                   , 1(q2(x1)) -> q2(1(x1))}
                Weak Rules:
                  {  0^#(q1(x1)) -> c_4(1^#(x1))
                   , 0(q2(x1)) -> 0(q0(x1))
                   , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))
                   , 0(q1(x1)) -> q2(1(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  q0_0(2) -> 2
                 , q0_0(4) -> 2
                 , q0_0(5) -> 2
                 , q1_0(2) -> 4
                 , q1_0(4) -> 4
                 , q1_0(5) -> 4
                 , q2_0(2) -> 5
                 , q2_0(4) -> 5
                 , q2_0(5) -> 5
                 , 1^#_0(2) -> 6
                 , 1^#_0(4) -> 6
                 , 1^#_0(5) -> 6
                 , 0^#_0(2) -> 8
                 , 0^#_0(4) -> 8
                 , 0^#_0(5) -> 8
                 , c_4_0(6) -> 8}
      
   9) {  0^#(q1(x1)) -> c_4(1^#(x1))
       , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))}
      
      The usable rules for this path are the following:
      {  0(q1(x1)) -> q2(1(x1))
       , 0(q2(x1)) -> 0(q0(x1))
       , 1(q0(1(x1))) -> 0(1(q1(x1)))
       , 1(q0(0(x1))) -> 0(0(q1(x1)))
       , 1(q1(1(x1))) -> 1(1(q1(x1)))
       , 1(q1(0(x1))) -> 1(0(q1(x1)))
       , 1(q2(x1)) -> q2(1(x1))}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  0(q1(x1)) -> q2(1(x1))
               , 0(q2(x1)) -> 0(q0(x1))
               , 1(q0(1(x1))) -> 0(1(q1(x1)))
               , 1(q0(0(x1))) -> 0(0(q1(x1)))
               , 1(q1(1(x1))) -> 1(1(q1(x1)))
               , 1(q1(0(x1))) -> 1(0(q1(x1)))
               , 1(q2(x1)) -> q2(1(x1))
               , 0^#(q1(x1)) -> c_4(1^#(x1))
               , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {0(q2(x1)) -> 0(q0(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0(q2(x1)) -> 0(q0(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [7]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))}
            and weakly orienting the rules
            {0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [0]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [6]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [5]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0^#(q1(x1)) -> c_4(1^#(x1))}
            and weakly orienting the rules
            {  1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))
             , 0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(q1(x1)) -> c_4(1^#(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [1]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [1]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  1(q0(1(x1))) -> 0(1(q1(x1)))
             , 1(q0(0(x1))) -> 0(0(q1(x1)))}
            and weakly orienting the rules
            {  0^#(q1(x1)) -> c_4(1^#(x1))
             , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))
             , 0(q2(x1)) -> 0(q0(x1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  1(q0(1(x1))) -> 0(1(q1(x1)))
               , 1(q0(0(x1))) -> 0(0(q1(x1)))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [1] x1 + [0]
                  q0(x1) = [1] x1 + [8]
                  0(x1) = [1] x1 + [1]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [1] x1 + [9]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [3]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  0(q1(x1)) -> q2(1(x1))
                 , 1(q1(1(x1))) -> 1(1(q1(x1)))
                 , 1(q1(0(x1))) -> 1(0(q1(x1)))
                 , 1(q2(x1)) -> q2(1(x1))}
              Weak Rules:
                {  1(q0(1(x1))) -> 0(1(q1(x1)))
                 , 1(q0(0(x1))) -> 0(0(q1(x1)))
                 , 0^#(q1(x1)) -> c_4(1^#(x1))
                 , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))
                 , 0(q2(x1)) -> 0(q0(x1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  0(q1(x1)) -> q2(1(x1))
                   , 1(q1(1(x1))) -> 1(1(q1(x1)))
                   , 1(q1(0(x1))) -> 1(0(q1(x1)))
                   , 1(q2(x1)) -> q2(1(x1))}
                Weak Rules:
                  {  1(q0(1(x1))) -> 0(1(q1(x1)))
                   , 1(q0(0(x1))) -> 0(0(q1(x1)))
                   , 0^#(q1(x1)) -> c_4(1^#(x1))
                   , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))
                   , 0(q2(x1)) -> 0(q0(x1))}
              
              Details:         
                The problem is Match-bounded by 0.
                The enriched problem is compatible with the following automaton:
                {  q0_0(2) -> 2
                 , q0_0(4) -> 2
                 , q0_0(5) -> 2
                 , q1_0(2) -> 4
                 , q1_0(4) -> 4
                 , q1_0(5) -> 4
                 , q2_0(2) -> 5
                 , q2_0(4) -> 5
                 , q2_0(5) -> 5
                 , 1^#_0(2) -> 6
                 , 1^#_0(4) -> 6
                 , 1^#_0(5) -> 6
                 , 0^#_0(2) -> 8
                 , 0^#_0(4) -> 8
                 , 0^#_0(5) -> 8
                 , c_4_0(6) -> 8}
      
   10)
      {0^#(q1(x1)) -> c_4(1^#(x1))}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           1(x1) = [0] x1 + [0]
           q0(x1) = [0] x1 + [0]
           0(x1) = [0] x1 + [0]
           q1(x1) = [0] x1 + [0]
           q2(x1) = [0] x1 + [0]
           1^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           0^#(x1) = [0] x1 + [0]
           c_1(x1) = [0] x1 + [0]
           c_2(x1) = [0] x1 + [0]
           c_3(x1) = [0] x1 + [0]
           c_4(x1) = [0] x1 + [0]
           c_5(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {0^#(q1(x1)) -> c_4(1^#(x1))}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {0^#(q1(x1)) -> c_4(1^#(x1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#(q1(x1)) -> c_4(1^#(x1))}
              
              Details:
                 Interpretation Functions:
                  1(x1) = [0] x1 + [0]
                  q0(x1) = [0] x1 + [0]
                  0(x1) = [0] x1 + [0]
                  q1(x1) = [1] x1 + [0]
                  q2(x1) = [0] x1 + [0]
                  1^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#(x1) = [1] x1 + [1]
                  c_1(x1) = [0] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [0] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {0^#(q1(x1)) -> c_4(1^#(x1))}
            
            Details:         
              The given problem does not contain any strict rules