'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 0(q1(x1)) -> q2(1(x1)) , 1(q2(x1)) -> q2(1(x1)) , 0(q2(x1)) -> 0(q0(x1))} Details: We have computed the following set of weak (innermost) dependency pairs: { 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1)))) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1)))) , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1)))) , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1)))) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))} The usable rules are: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 0(q1(x1)) -> q2(1(x1)) , 1(q2(x1)) -> q2(1(x1)) , 0(q2(x1)) -> 0(q0(x1))} The estimated dependency graph contains the following edges: {1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))} ==> {0^#(q2(x1)) -> c_6(0^#(q0(x1)))} {1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))} ==> {0^#(q2(x1)) -> c_6(0^#(q0(x1)))} {1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))} ==> {1^#(q2(x1)) -> c_5(1^#(x1))} {1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))} ==> {1^#(q2(x1)) -> c_5(1^#(x1))} {0^#(q1(x1)) -> c_4(1^#(x1))} ==> {1^#(q2(x1)) -> c_5(1^#(x1))} {0^#(q1(x1)) -> c_4(1^#(x1))} ==> {1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))} {0^#(q1(x1)) -> c_4(1^#(x1))} ==> {1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))} {0^#(q1(x1)) -> c_4(1^#(x1))} ==> {1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))} {0^#(q1(x1)) -> c_4(1^#(x1))} ==> {1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))} {1^#(q2(x1)) -> c_5(1^#(x1))} ==> {1^#(q2(x1)) -> c_5(1^#(x1))} {1^#(q2(x1)) -> c_5(1^#(x1))} ==> {1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))} {1^#(q2(x1)) -> c_5(1^#(x1))} ==> {1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1))))} {1^#(q2(x1)) -> c_5(1^#(x1))} ==> {1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))} {1^#(q2(x1)) -> c_5(1^#(x1))} ==> {1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))} We consider the following path(s): 1) { 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1)))) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1)))) , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))} The usable rules for this path are the following: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 0(q1(x1)) -> q2(1(x1)) , 1(q2(x1)) -> q2(1(x1)) , 0(q2(x1)) -> 0(q0(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 0(q1(x1)) -> q2(1(x1)) , 1(q2(x1)) -> q2(1(x1)) , 0(q2(x1)) -> 0(q0(x1)) , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1)))) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1)))) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))} Details: We apply the weight gap principle, strictly orienting the rules {0(q2(x1)) -> 0(q0(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(q2(x1)) -> 0(q0(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 1^#(q2(x1)) -> c_5(1^#(x1)) , 0^#(q1(x1)) -> c_4(1^#(x1))} and weakly orienting the rules {0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 1^#(q2(x1)) -> c_5(1^#(x1)) , 0^#(q1(x1)) -> c_4(1^#(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [3] c_1(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(q1(x1)) -> q2(1(x1))} and weakly orienting the rules { 1^#(q2(x1)) -> c_5(1^#(x1)) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(q1(x1)) -> q2(1(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] 1^#(x1) = [1] x1 + [15] c_0(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [15] c_1(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [2] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))} and weakly orienting the rules { 0(q1(x1)) -> q2(1(x1)) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [13] 0(x1) = [1] x1 + [10] q1(x1) = [1] x1 + [4] q2(x1) = [1] x1 + [13] 1^#(x1) = [1] x1 + [3] c_0(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [12] c_3(x1) = [1] x1 + [6] c_4(x1) = [1] x1 + [0] c_5(x1) = [1] x1 + [5] c_6(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1)) , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1)))) , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))} Weak Rules: { 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1)))) , 0(q1(x1)) -> q2(1(x1)) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 0(q2(x1)) -> 0(q0(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1)) , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1)))) , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))} Weak Rules: { 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1)))) , 0(q1(x1)) -> q2(1(x1)) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 0(q2(x1)) -> 0(q0(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { q0_0(2) -> 2 , q0_0(4) -> 2 , q0_0(5) -> 2 , q1_0(2) -> 4 , q1_0(4) -> 4 , q1_0(5) -> 4 , q2_0(2) -> 5 , q2_0(4) -> 5 , q2_0(5) -> 5 , 1^#_0(2) -> 6 , 1^#_0(4) -> 6 , 1^#_0(5) -> 6 , 0^#_0(2) -> 8 , 0^#_0(4) -> 8 , 0^#_0(5) -> 8 , c_4_0(6) -> 8 , c_5_0(6) -> 6} 2) { 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1)))) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1)))) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1)))) , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))} The usable rules for this path are the following: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 0(q1(x1)) -> q2(1(x1)) , 1(q2(x1)) -> q2(1(x1)) , 0(q2(x1)) -> 0(q0(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 0(q1(x1)) -> q2(1(x1)) , 1(q2(x1)) -> q2(1(x1)) , 0(q2(x1)) -> 0(q0(x1)) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1)))) , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1)))) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1)))) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))} Details: We apply the weight gap principle, strictly orienting the rules {0(q2(x1)) -> 0(q0(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(q2(x1)) -> 0(q0(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [4] c_4(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0^#(q2(x1)) -> c_6(0^#(q0(x1)))} and weakly orienting the rules {0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(q2(x1)) -> c_6(0^#(q0(x1)))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))} and weakly orienting the rules { 0^#(q2(x1)) -> c_6(0^#(q0(x1))) , 0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [4] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {1^#(q2(x1)) -> c_5(1^#(x1))} and weakly orienting the rules { 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1)))) , 0^#(q2(x1)) -> c_6(0^#(q0(x1))) , 0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {1^#(q2(x1)) -> c_5(1^#(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(q1(x1)) -> q2(1(x1))} and weakly orienting the rules { 1^#(q2(x1)) -> c_5(1^#(x1)) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1)))) , 0^#(q2(x1)) -> c_6(0^#(q0(x1))) , 0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(q1(x1)) -> q2(1(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [8] q0(x1) = [1] x1 + [4] 0(x1) = [1] x1 + [9] q1(x1) = [1] x1 + [12] q2(x1) = [1] x1 + [8] 1^#(x1) = [1] x1 + [12] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [8] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [4] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0^#(q1(x1)) -> c_4(1^#(x1))} and weakly orienting the rules { 0(q1(x1)) -> q2(1(x1)) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1)))) , 0^#(q2(x1)) -> c_6(0^#(q0(x1))) , 0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(q1(x1)) -> c_4(1^#(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [2] 0(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [8] q2(x1) = [1] x1 + [4] 1^#(x1) = [1] x1 + [6] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [8] c_4(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1)) , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1)))) , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))} Weak Rules: { 0^#(q1(x1)) -> c_4(1^#(x1)) , 0(q1(x1)) -> q2(1(x1)) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1)))) , 0^#(q2(x1)) -> c_6(0^#(q0(x1))) , 0(q2(x1)) -> 0(q0(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1)) , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1)))) , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))} Weak Rules: { 0^#(q1(x1)) -> c_4(1^#(x1)) , 0(q1(x1)) -> q2(1(x1)) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1)))) , 0^#(q2(x1)) -> c_6(0^#(q0(x1))) , 0(q2(x1)) -> 0(q0(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { q0_0(2) -> 2 , q0_0(4) -> 2 , q0_0(5) -> 2 , q1_0(2) -> 4 , q1_0(4) -> 4 , q1_0(5) -> 4 , q2_0(2) -> 5 , q2_0(4) -> 5 , q2_0(5) -> 5 , 1^#_0(2) -> 6 , 1^#_0(4) -> 6 , 1^#_0(5) -> 6 , 0^#_0(2) -> 8 , 0^#_0(4) -> 8 , 0^#_0(5) -> 8 , c_4_0(6) -> 8 , c_5_0(6) -> 6 , c_6_0(8) -> 8} 3) { 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1)))) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1)))) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))} The usable rules for this path are the following: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 0(q1(x1)) -> q2(1(x1)) , 1(q2(x1)) -> q2(1(x1)) , 0(q2(x1)) -> 0(q0(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 0(q1(x1)) -> q2(1(x1)) , 1(q2(x1)) -> q2(1(x1)) , 0(q2(x1)) -> 0(q0(x1)) , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1)))) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1)))) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))} Details: We apply the weight gap principle, strictly orienting the rules {0(q2(x1)) -> 0(q0(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(q2(x1)) -> 0(q0(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(x1)) -> q2(1(x1)) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))} and weakly orienting the rules {0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(x1)) -> q2(1(x1)) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] 1^#(x1) = [1] x1 + [9] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {1^#(q2(x1)) -> c_5(1^#(x1))} and weakly orienting the rules { 0(q1(x1)) -> q2(1(x1)) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1)))) , 0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {1^#(q2(x1)) -> c_5(1^#(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [15] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [2] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0^#(q1(x1)) -> c_4(1^#(x1))} and weakly orienting the rules { 1^#(q2(x1)) -> c_5(1^#(x1)) , 0(q1(x1)) -> q2(1(x1)) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1)))) , 0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(q1(x1)) -> c_4(1^#(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [2] c_3(x1) = [1] x1 + [10] c_4(x1) = [1] x1 + [0] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1)) , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1)))) , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))} Weak Rules: { 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 0(q1(x1)) -> q2(1(x1)) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1)))) , 0(q2(x1)) -> 0(q0(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1)) , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1)))) , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))} Weak Rules: { 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 0(q1(x1)) -> q2(1(x1)) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1)))) , 0(q2(x1)) -> 0(q0(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { q0_0(2) -> 2 , q1_0(2) -> 2 , q2_0(2) -> 2 , 1^#_0(2) -> 1 , 0^#_0(2) -> 1 , c_4_0(1) -> 1 , c_5_0(1) -> 1} 4) { 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1)))) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))} The usable rules for this path are the following: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 0(q1(x1)) -> q2(1(x1)) , 1(q2(x1)) -> q2(1(x1)) , 0(q2(x1)) -> 0(q0(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 0(q1(x1)) -> q2(1(x1)) , 1(q2(x1)) -> q2(1(x1)) , 0(q2(x1)) -> 0(q0(x1)) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1)))) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))} Details: We apply the weight gap principle, strictly orienting the rules {0(q2(x1)) -> 0(q0(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(q2(x1)) -> 0(q0(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [1] c_6(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {1^#(q2(x1)) -> c_5(1^#(x1))} and weakly orienting the rules {0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {1^#(q2(x1)) -> c_5(1^#(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [9] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0^#(q1(x1)) -> c_4(1^#(x1))} and weakly orienting the rules { 1^#(q2(x1)) -> c_5(1^#(x1)) , 0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(q1(x1)) -> c_4(1^#(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [9] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(q1(x1)) -> q2(1(x1))} and weakly orienting the rules { 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(q1(x1)) -> q2(1(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] 1^#(x1) = [1] x1 + [1] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [9] c_1(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [3] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [8] c_5(x1) = [1] x1 + [0] c_6(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1)) , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1)))) , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))} Weak Rules: { 0(q1(x1)) -> q2(1(x1)) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 0(q2(x1)) -> 0(q0(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1)) , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1)))) , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))} Weak Rules: { 0(q1(x1)) -> q2(1(x1)) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 0(q2(x1)) -> 0(q0(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { q0_0(2) -> 2 , q0_0(4) -> 2 , q0_0(5) -> 2 , q1_0(2) -> 4 , q1_0(4) -> 4 , q1_0(5) -> 4 , q2_0(2) -> 5 , q2_0(4) -> 5 , q2_0(5) -> 5 , 1^#_0(2) -> 6 , 1^#_0(4) -> 6 , 1^#_0(5) -> 6 , 0^#_0(2) -> 8 , 0^#_0(4) -> 8 , 0^#_0(5) -> 8 , c_4_0(6) -> 8 , c_5_0(6) -> 6} 5) { 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1)))) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1)))) , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1)))) , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))} The usable rules for this path are the following: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 0(q1(x1)) -> q2(1(x1)) , 1(q2(x1)) -> q2(1(x1)) , 0(q2(x1)) -> 0(q0(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 0(q1(x1)) -> q2(1(x1)) , 1(q2(x1)) -> q2(1(x1)) , 0(q2(x1)) -> 0(q0(x1)) , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1)))) , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1)))) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1)))) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))} Details: We apply the weight gap principle, strictly orienting the rules {0(q2(x1)) -> 0(q0(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(q2(x1)) -> 0(q0(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [4] c_4(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {1^#(q2(x1)) -> c_5(1^#(x1))} and weakly orienting the rules {0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {1^#(q2(x1)) -> c_5(1^#(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0^#(q1(x1)) -> c_4(1^#(x1)) , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))} and weakly orienting the rules { 1^#(q2(x1)) -> c_5(1^#(x1)) , 0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0^#(q1(x1)) -> c_4(1^#(x1)) , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [4] 0^#(x1) = [1] x1 + [7] c_1(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5(x1) = [1] x1 + [0] c_6(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 0(q1(x1)) -> q2(1(x1)) , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))} and weakly orienting the rules { 0^#(q1(x1)) -> c_4(1^#(x1)) , 0^#(q2(x1)) -> c_6(0^#(q0(x1))) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 0(q1(x1)) -> q2(1(x1)) , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [6] 0(x1) = [1] x1 + [6] q1(x1) = [1] x1 + [2] q2(x1) = [1] x1 + [7] 1^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [2] c_1(x1) = [0] x1 + [0] c_2(x1) = [1] x1 + [0] c_3(x1) = [1] x1 + [3] c_4(x1) = [1] x1 + [1] c_5(x1) = [1] x1 + [1] c_6(x1) = [1] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1)) , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1)))) , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))} Weak Rules: { 0(q1(x1)) -> q2(1(x1)) , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1)))) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 0^#(q2(x1)) -> c_6(0^#(q0(x1))) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 0(q2(x1)) -> 0(q0(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1)) , 1^#(q1(1(x1))) -> c_2(1^#(1(q1(x1)))) , 1^#(q1(0(x1))) -> c_3(1^#(0(q1(x1))))} Weak Rules: { 0(q1(x1)) -> q2(1(x1)) , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1)))) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 0^#(q2(x1)) -> c_6(0^#(q0(x1))) , 1^#(q2(x1)) -> c_5(1^#(x1)) , 0(q2(x1)) -> 0(q0(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { q0_0(2) -> 2 , q0_0(4) -> 2 , q0_0(5) -> 2 , q1_0(2) -> 4 , q1_0(4) -> 4 , q1_0(5) -> 4 , q2_0(2) -> 5 , q2_0(4) -> 5 , q2_0(5) -> 5 , 1^#_0(2) -> 6 , 1^#_0(4) -> 6 , 1^#_0(5) -> 6 , 0^#_0(2) -> 8 , 0^#_0(4) -> 8 , 0^#_0(5) -> 8 , c_4_0(6) -> 8 , c_5_0(6) -> 6 , c_6_0(8) -> 8} 6) { 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1)))) , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))} The usable rules for this path are the following: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1)) , 0(q1(x1)) -> q2(1(x1)) , 0(q2(x1)) -> 0(q0(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1)) , 0(q1(x1)) -> q2(1(x1)) , 0(q2(x1)) -> 0(q0(x1)) , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1)))) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))} Details: We apply the weight gap principle, strictly orienting the rules {0(q1(x1)) -> q2(1(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(q1(x1)) -> q2(1(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] 1^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [1] 0^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [7] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0^#(q1(x1)) -> c_4(1^#(x1))} and weakly orienting the rules {0(q1(x1)) -> q2(1(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(q1(x1)) -> c_4(1^#(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] 1^#(x1) = [1] x1 + [1] c_0(x1) = [1] x1 + [8] 0^#(x1) = [1] x1 + [9] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(q2(x1)) -> 0(q0(x1))} and weakly orienting the rules { 0^#(q1(x1)) -> c_4(1^#(x1)) , 0(q1(x1)) -> q2(1(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(q2(x1)) -> 0(q0(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [8] 0^#(x1) = [1] x1 + [9] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [8] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0^#(q2(x1)) -> c_6(0^#(q0(x1)))} and weakly orienting the rules { 0(q2(x1)) -> 0(q0(x1)) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 0(q1(x1)) -> q2(1(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(q2(x1)) -> c_6(0^#(q0(x1)))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [7] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))} and weakly orienting the rules { 0^#(q2(x1)) -> c_6(0^#(q0(x1))) , 0(q2(x1)) -> 0(q0(x1)) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 0(q1(x1)) -> q2(1(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [8] q1(x1) = [1] x1 + [8] q2(x1) = [1] x1 + [12] 1^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [7] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1))} Weak Rules: { 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1)))) , 0^#(q2(x1)) -> c_6(0^#(q0(x1))) , 0(q2(x1)) -> 0(q0(x1)) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 0(q1(x1)) -> q2(1(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1))} Weak Rules: { 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1)))) , 0^#(q2(x1)) -> c_6(0^#(q0(x1))) , 0(q2(x1)) -> 0(q0(x1)) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 0(q1(x1)) -> q2(1(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { q0_0(2) -> 2 , q0_0(4) -> 2 , q0_0(5) -> 2 , q1_0(2) -> 4 , q1_0(4) -> 4 , q1_0(5) -> 4 , q2_0(2) -> 5 , q2_0(4) -> 5 , q2_0(5) -> 5 , 1^#_0(2) -> 6 , 1^#_0(4) -> 6 , 1^#_0(5) -> 6 , 0^#_0(2) -> 8 , 0^#_0(4) -> 8 , 0^#_0(5) -> 8 , c_4_0(6) -> 8 , c_6_0(8) -> 8} 7) { 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1)))) , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))} The usable rules for this path are the following: { 0(q1(x1)) -> q2(1(x1)) , 0(q2(x1)) -> 0(q0(x1)) , 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { 0(q1(x1)) -> q2(1(x1)) , 0(q2(x1)) -> 0(q0(x1)) , 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1)) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1)))) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 0^#(q2(x1)) -> c_6(0^#(q0(x1)))} Details: We apply the weight gap principle, strictly orienting the rules {0(q2(x1)) -> 0(q0(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(q2(x1)) -> 0(q0(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0^#(q1(x1)) -> c_4(1^#(x1))} and weakly orienting the rules {0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(q1(x1)) -> c_4(1^#(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [2] c_1(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [3] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0^#(q2(x1)) -> c_6(0^#(q0(x1)))} and weakly orienting the rules { 0^#(q1(x1)) -> c_4(1^#(x1)) , 0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(q2(x1)) -> c_6(0^#(q0(x1)))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))} and weakly orienting the rules { 0^#(q2(x1)) -> c_6(0^#(q0(x1))) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1)))} and weakly orienting the rules { 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1)))) , 0^#(q2(x1)) -> c_6(0^#(q0(x1))) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1)))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [4] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [9] 1^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [1] x1 + [1] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 0(q1(x1)) -> q2(1(x1)) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1))} Weak Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1)))) , 0^#(q2(x1)) -> c_6(0^#(q0(x1))) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 0(q2(x1)) -> 0(q0(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 0(q1(x1)) -> q2(1(x1)) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1))} Weak Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1)))) , 0^#(q2(x1)) -> c_6(0^#(q0(x1))) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 0(q2(x1)) -> 0(q0(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { q0_0(2) -> 2 , q0_0(4) -> 2 , q0_0(5) -> 2 , q1_0(2) -> 4 , q1_0(4) -> 4 , q1_0(5) -> 4 , q2_0(2) -> 5 , q2_0(4) -> 5 , q2_0(5) -> 5 , 1^#_0(2) -> 6 , 1^#_0(4) -> 6 , 1^#_0(5) -> 6 , 0^#_0(2) -> 8 , 0^#_0(4) -> 8 , 0^#_0(5) -> 8 , c_4_0(6) -> 8 , c_6_0(8) -> 8} 8) { 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))} The usable rules for this path are the following: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1)) , 0(q1(x1)) -> q2(1(x1)) , 0(q2(x1)) -> 0(q0(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1)) , 0(q1(x1)) -> q2(1(x1)) , 0(q2(x1)) -> 0(q0(x1)) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))} Details: We apply the weight gap principle, strictly orienting the rules {0(q1(x1)) -> q2(1(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(q1(x1)) -> q2(1(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] 1^#(x1) = [1] x1 + [0] c_0(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))} and weakly orienting the rules {0(q1(x1)) -> q2(1(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1))))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [0] 1^#(x1) = [1] x1 + [8] c_0(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0(q2(x1)) -> 0(q0(x1))} and weakly orienting the rules { 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1)))) , 0(q1(x1)) -> q2(1(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(q2(x1)) -> 0(q0(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [9] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [8] 1^#(x1) = [1] x1 + [4] c_0(x1) = [1] x1 + [3] 0^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0^#(q1(x1)) -> c_4(1^#(x1))} and weakly orienting the rules { 0(q2(x1)) -> 0(q0(x1)) , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1)))) , 0(q1(x1)) -> q2(1(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(q1(x1)) -> c_4(1^#(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [9] 0(x1) = [1] x1 + [0] q1(x1) = [1] x1 + [9] q2(x1) = [1] x1 + [9] 1^#(x1) = [1] x1 + [7] c_0(x1) = [1] x1 + [0] 0^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [2] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1))} Weak Rules: { 0^#(q1(x1)) -> c_4(1^#(x1)) , 0(q2(x1)) -> 0(q0(x1)) , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1)))) , 0(q1(x1)) -> q2(1(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1))} Weak Rules: { 0^#(q1(x1)) -> c_4(1^#(x1)) , 0(q2(x1)) -> 0(q0(x1)) , 1^#(q0(1(x1))) -> c_0(0^#(1(q1(x1)))) , 0(q1(x1)) -> q2(1(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { q0_0(2) -> 2 , q0_0(4) -> 2 , q0_0(5) -> 2 , q1_0(2) -> 4 , q1_0(4) -> 4 , q1_0(5) -> 4 , q2_0(2) -> 5 , q2_0(4) -> 5 , q2_0(5) -> 5 , 1^#_0(2) -> 6 , 1^#_0(4) -> 6 , 1^#_0(5) -> 6 , 0^#_0(2) -> 8 , 0^#_0(4) -> 8 , 0^#_0(5) -> 8 , c_4_0(6) -> 8} 9) { 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))} The usable rules for this path are the following: { 0(q1(x1)) -> q2(1(x1)) , 0(q2(x1)) -> 0(q0(x1)) , 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1))} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { 0(q1(x1)) -> q2(1(x1)) , 0(q2(x1)) -> 0(q0(x1)) , 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1)) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))} Details: We apply the weight gap principle, strictly orienting the rules {0(q2(x1)) -> 0(q0(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0(q2(x1)) -> 0(q0(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [7] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))} and weakly orienting the rules {0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1))))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [0] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [8] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [6] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [5] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {0^#(q1(x1)) -> c_4(1^#(x1))} and weakly orienting the rules { 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1)))) , 0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(q1(x1)) -> c_4(1^#(x1))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [1] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [1] 1^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1)))} and weakly orienting the rules { 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1)))) , 0(q2(x1)) -> 0(q0(x1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1)))} Details: Interpretation Functions: 1(x1) = [1] x1 + [0] q0(x1) = [1] x1 + [8] 0(x1) = [1] x1 + [1] q1(x1) = [1] x1 + [0] q2(x1) = [1] x1 + [9] 1^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [3] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [1] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 0(q1(x1)) -> q2(1(x1)) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1))} Weak Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1)))) , 0(q2(x1)) -> 0(q0(x1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { 0(q1(x1)) -> q2(1(x1)) , 1(q1(1(x1))) -> 1(1(q1(x1))) , 1(q1(0(x1))) -> 1(0(q1(x1))) , 1(q2(x1)) -> q2(1(x1))} Weak Rules: { 1(q0(1(x1))) -> 0(1(q1(x1))) , 1(q0(0(x1))) -> 0(0(q1(x1))) , 0^#(q1(x1)) -> c_4(1^#(x1)) , 1^#(q0(0(x1))) -> c_1(0^#(0(q1(x1)))) , 0(q2(x1)) -> 0(q0(x1))} Details: The problem is Match-bounded by 0. The enriched problem is compatible with the following automaton: { q0_0(2) -> 2 , q0_0(4) -> 2 , q0_0(5) -> 2 , q1_0(2) -> 4 , q1_0(4) -> 4 , q1_0(5) -> 4 , q2_0(2) -> 5 , q2_0(4) -> 5 , q2_0(5) -> 5 , 1^#_0(2) -> 6 , 1^#_0(4) -> 6 , 1^#_0(5) -> 6 , 0^#_0(2) -> 8 , 0^#_0(4) -> 8 , 0^#_0(5) -> 8 , c_4_0(6) -> 8} 10) {0^#(q1(x1)) -> c_4(1^#(x1))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: 1(x1) = [0] x1 + [0] q0(x1) = [0] x1 + [0] 0(x1) = [0] x1 + [0] q1(x1) = [0] x1 + [0] q2(x1) = [0] x1 + [0] 1^#(x1) = [0] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#(x1) = [0] x1 + [0] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [0] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {0^#(q1(x1)) -> c_4(1^#(x1))} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {0^#(q1(x1)) -> c_4(1^#(x1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {0^#(q1(x1)) -> c_4(1^#(x1))} Details: Interpretation Functions: 1(x1) = [0] x1 + [0] q0(x1) = [0] x1 + [0] 0(x1) = [0] x1 + [0] q1(x1) = [1] x1 + [0] q2(x1) = [0] x1 + [0] 1^#(x1) = [1] x1 + [0] c_0(x1) = [0] x1 + [0] 0^#(x1) = [1] x1 + [1] c_1(x1) = [0] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [0] x1 + [0] c_4(x1) = [1] x1 + [0] c_5(x1) = [0] x1 + [0] c_6(x1) = [0] x1 + [0] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: {0^#(q1(x1)) -> c_4(1^#(x1))} Details: The given problem does not contain any strict rules